701 research outputs found

    A Large-Scale Empirical Study on Semantic Versioning in Golang Ecosystem

    Full text link
    Third-party libraries (TPLs) have become an essential component of software, accelerating development and reducing maintenance costs. However, breaking changes often occur during the upgrades of TPLs and prevent client programs from moving forward. Semantic versioning (SemVer) has been applied to standardize the versions of releases according to compatibility, but not all releases follow SemVer compliance. Lots of work focuses on SemVer compliance in ecosystems such as Java and JavaScript beyond Golang (Go for short). Due to the lack of tools to detect breaking changes and dataset for Go, developers of TPLs do not know if breaking changes occur and affect client programs, and developers of client programs may hesitate to upgrade dependencies in terms of breaking changes. To bridge this gap, we conduct the first large-scale empirical study in the Go ecosystem to study SemVer compliance in terms of breaking changes and their impact. In detail, we purpose GoSVI (Go Semantic Versioning Insight) to detect breaking changes and analyze their impact by resolving identifiers in client programs and comparing their types with breaking changes. Moreover, we collect the first large-scale Go dataset with a dependency graph from GitHub, including 124K TPLs and 532K client programs. Based on the dataset, our results show that 86.3% of library upgrades follow SemVer compliance and 28.6% of no-major upgrades introduce breaking changes. Furthermore, the tendency to comply with SemVer has improved over time from 63.7% in 2018/09 to 92.2% in 2023/03. Finally, we find 33.3% of downstream client programs may be affected by breaking changes. These findings provide developers and users of TPLs with valuable insights to help make decisions related to SemVer.Comment: 11 pages, 4 figure

    Effects of Huge Earthquakes on Earth Rotation and the length of Day

    Full text link

    A Feasibility Study of an FEM Simulation Used in Co-Seismic Deformations: A Case Study of a Dip-Slip Fault

    Full text link
    For this study, we conducted a numerical simulation on co-seismic displacement for a dip-slip fault in a half-space medium based upon a finite element method (FEM). After investigating technical problems of modeling, source and boundary treatment, we calculated co-seismic deformation with consideration to topography. To verify the numerical simulation results, the simulated co-seismic displacement was compared with that calculated using a dislocation theory. As a case study, considering the seismic parameters of the 2008 Wenchuan earthquake (M 8.0) as a source model, we calculate the co-seismic displacements with or without consideration of the terrain model in the finite element model to observe terrain effects on co-seismic deformation. Results show that topography has a non-negligible effect on co-seismic displacement, reaching from -11.59 to 4.0 cm in horizontal displacement, and from -3.28 to 3.28 cm in vertical displacement. The relative effects are 9.05 and 2.95% for horizontal and vertical displacement, respectively. Such a terrain effect is sufficiently large and can be detected by modern geodetic measurements such as GPS. Therefore, we conclude that the topography should be considered in applying dislocation theory to calculate co-seismic deformations

    Assessment of habitat suitability and connectivity across the potential distribution landscape of the sambar (Rusa unicolor) in Southwest China

    Get PDF
    Habitat suitability assessment is the basis for wildlife conservation management and habitat restoration. It is a useful tool to understand the quality of wildlife habitat and its potential spatial distribution. In order to reveal the habitat suitability and connectivity of sambar (Rusa unicolor) to promote species and biodiversity conservation, this study collected records of sambar (Rusa unicolor) from over 2,000 camera traps in the forests of Southwest China in the past 5 years to assess the overall situation of their habitat. The results of the species distribution model revealed that the suitable habitat area for sambar in the five major mountain ranges (Minshan, Qionglai, Daxiangling, Xiaoxiangling, and Liangshan) in Southwest China is 18,231 km2, accounting for 17.02% of the total area. The most suitable habitat of sambar is primarily distributed in Qionglai, as well as the intersection areas of Daxiangling, Xiaoxiangling, and Minshan. The temperature annual range, temperature seasonality, elevation, and distance to road were important factors affecting the distribution of suitable habitat for sambar. Analysis of landscape pattern shows that there were 273 habitat patches, with a maximum patch area of 9,983 km2, accounting for 54.8% of the total suitable habitat area. However, the segmentation index and separation index of each habitat patch were 0.99 and 106.58, respectively, indicating a relatively high habitat fragmentation in the study area. The results of habitat connectivity analysis showed that the Qionglai mountains have the largest suitable habitat area and the highest connectivity among habitat patches. However, habitat connectivity between the five mountains is very low, suggesting that gene flow among these mountain ranges is probably limited. We therefore recommend strengthening protection of sambar and their habitat, with special attention to the establishment of corridors between the different mountain populations

    Effects of soil grain size and solution chemistry on the transport of biochar nanoparticles

    Get PDF
    Biochar nanoparticles (BC-NP) have attracted significant attention because of their unique environmental behavior, some of which could potentially limit large-scale field application of biochar. Accurate prediction of the fate and transportability of BC-NP in soil matrix is the key to evaluating their environmental influence. This study investigated the effects of soil grain size and environmentally relevant solution chemistry, such as ionic strength (cation concentration, 0.1 mM–50 mM; cation type, Na+, and Ca2+), and humic acid (HA; 0–10 mg/L), on the transport behavior of BC-NP via systematic column experiments. The transportability of BC-NP in the soil-packed column decreased with decreasing soil grain size and was inversely proportional to soil clay content. At low cation concentrations (0.1–1.0 mM), a considerable proportion of BC-NP (15.95%–67.17%) penetrated the soil columns. Compared with Na+, Ca2+ inhibited the transportability of BC-NP in the soil through a charge shielding effect. With increasing HA concentration, the transportability of BC-NP increased, likely due to an enhanced repulsion force between BC-NP and soil particles. However, at a high HA concentration (10 mg/L), Ca2+ bridging reduced the transportability of BC-NP in the soil. Breakthrough curves of BC-NP were explained by the two-site kinetic retention model. The antagonistic effects of ionic strength and HA indicated that the transport behavior of BC-NP in the soil was governed by competitive effects of some environmental factors, including soil grain size, environmental solution chemistry, and natural organic matter content

    W::Neo: A Novel Dual-Selection Marker for High Efficiency Gene Targeting in Drosophila

    Get PDF
    We have recently developed a so-called genomic engineering approach that allows for directed, efficient and versatile modifications of Drosophila genome by combining the homologous recombination (HR)-based gene targeting with site-specific DNA integration. In genomic engineering and several similar approaches, a “founder” knock-out line must be generated first through HR-based gene targeting, which can still be a potentially time and resource intensive process. To significantly improve the efficiency and success rate of HR-based gene targeting in Drosophila, we have generated a new dual-selection marker termed W::Neo, which is a direct fusion between proteins of eye color marker White (W) and neomycin resistance (Neo). In HR-based gene targeting experiments, mutants carrying W::Neo as the selection marker can be enriched as much as fifty times by taking advantage of the antibiotic selection in Drosophila larvae. We have successfully carried out three independent gene targeting experiments using the W::Neo to generate genomic engineering founder knock-out lines in Drosophila

    Circulating FGF21 Levels Are Progressively Increased from the Early to End Stages of Chronic Kidney Diseases and Are Associated with Renal Function in Chinese

    Get PDF
    Fibroblast growth factor 21 (FGF21) is a hepatic hormone involved in the regulation of lipid and carbohydrate metabolism. This study aims to test the hypothesis that elevated FGF21 concentrations are associated with the change of renal function and the presence of left ventricular hypertrophy (LVH) in the different stages of chronic kidney disease (CKD) progression.0.05).Plasma FGF21 levels are significantly increased with the development of early- to end-stage CKD and are independently associated with renal function and adverse lipid profiles in Chinese population. Understanding whether increased FGF21 is associated with myocardial hypertrophy in CKD requires further study

    Measurements of differential cross-sections in top-quark pair events with a high transverse momentum top quark and limits on beyond the Standard Model contributions to top-quark pair production with the ATLAS detector at √s = 13 TeV

    Get PDF
    Cross-section measurements of top-quark pair production where the hadronically decaying top quark has transverse momentum greater than 355 GeV and the other top quark decays into ℓνb are presented using 139 fb−1 of data collected by the ATLAS experiment during proton-proton collisions at the LHC. The fiducial cross-section at s = 13 TeV is measured to be σ = 1.267 ± 0.005 ± 0.053 pb, where the uncertainties reflect the limited number of data events and the systematic uncertainties, giving a total uncertainty of 4.2%. The cross-section is measured differentially as a function of variables characterising the tt¯ system and additional radiation in the events. The results are compared with various Monte Carlo generators, including comparisons where the generators are reweighted to match a parton-level calculation at next-to-next-to-leading order. The reweighting improves the agreement between data and theory. The measured distribution of the top-quark transverse momentum is used to search for new physics in the context of the effective field theory framework. No significant deviation from the Standard Model is observed and limits are set on the Wilson coefficients of the dimension-six operators OtG and Otq(8), where the limits on the latter are the most stringent to date. [Figure not available: see fulltext.]

    Model-independent search for the presence of new physics in events including H → γγ with s \sqrt{s} = 13 TeV pp data recorded by the ATLAS detector at the LHC

    Get PDF
    Abstract A model-independent search for new physics leading to final states containing a Higgs boson, with a mass of 125.09 GeV, decaying to a pair of photons is performed with 139 fb−1 of s s \sqrt{s} = 13 TeV pp collision data recorded by the ATLAS detector at the Large Hadron Collider at CERN. This search examines 22 final states categorized by the objects that are produced in association with the Higgs boson. These objects include isolated electrons or muons, hadronically decaying τ-leptons, additional photons, missing transverse momentum, and hadronic jets, as well as jets that are tagged as containing a b-hadron. No significant excesses above Standard Model expectations are observed and limits on the production cross section at 95% confidence level are set. Detector efficiencies are reported for all 22 signal regions, which can be used to convert detector-level cross-section limits reported in this paper to particle-level cross-section constraints
    corecore